文章分类

当前位置:首页>光模块>光模块>光纤通信基础知识

光纤通信基础知识

发布时间:2016-07-22 点击数:1415
光纤通信(Fiber-optic communication),也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式,被称之为“有线”光通信。当今,光纤以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。

1.光纤通信的历史
1966年英籍华人高锟(Charles Kao)发表论文提出用石英制作玻璃丝(光纤),其损耗可达20dB/km,可实现大容量的光纤通信。当时,世界上只有少数人相信,如英国的标准电信实验室(STL)、美国的Corning玻璃公司,Bell实验室等领导。
2009年高锟因发明光纤获得诺贝尔奖。
1970年,Corning公司研制出损失低达20dB/km,长约30 m的石英光纤,据说花费了3000千万美元。
1976年Bell实验室在华盛顿亚特兰大建立了一条实验线路,传输速率仅45Mb/s,只能传输数百路电话,而用中同轴电缆可传输1800路电话。因为当时尚无通信用的激光器,而是用发光二极管(LED)做光纤通信的光源,所以速率很低。
1984年左右,通信用的半导体激光器研制成功,光纤通信的速率达到144Mb/s,可传输1920路电话。
1992年一根光纤传输速率达到2.5Gb/s,相当3万余路电话。
1996年,各种波长的激光器研制成功,可实现多波长多通道的光纤通信,即所谓“波分复用”(WDM)技术,也就是在1根光纤内,传输多个不同波长的光信号。于是光纤通信的传输容量倍增。
2000年,利用WDM技术,一根光纤光纤传输速率达到640Gb/s。有人对高锟1976年发明了光纤,而2010年才获得诺贝尔奖有很大的疑问。事实上,从以上光纤发展史可以看出,尽管光纤的容量很大,没有高速度的激光器和微电子仍不能发挥光纤超大容量的作用。电子器件的速率才达到吉比特/秒量级,各种波长的高速激光器的出现使光纤传输达到太比特/秒量级(1Tb/s=1000 Gb/s),人们才认识到“光纤的发明引发了通信技术的一场革命!”

2.光纤通信组成部分
最基本的光纤通信系统由光发信机、光收信机、光纤线路、中继器以及无源器件组成。其中光发信机负责将信号转变成适合于在光纤上传输的光信号,光纤线路负责传输信号,而光收信机负责接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。

(1)光发信机----由光源、驱动器和调制器组成,实现电/光转换的光端机。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。

(2)光收信机----由光检测器和光放大器组成,实现光/电转换的光端机。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。

(3)光纤线路----其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。

(4)中继器----由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。

(5)无源器件----包括光纤连接器、耦合器等,完成光纤间的连接、光纤与光端机的连接及耦合。


3.光纤通信技术特性
(1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。400Gbit/s系统已经投入商业使用。光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比任何传输媒质的损耗都低。因此,无中继传输距离可达几十、甚至上百公里。
(2)信号干扰小、保密性能好;
(3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。
(4)光纤尺寸小、重量轻,便于铺设和运输;
(5)材料来源丰富,环境保护好,有利于节约有色金属铜。
(6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。[1]
(7)光缆适应性强,寿命长。
(8)质地脆,机械强度差。
(9)光纤的切断和接续需要一定的工具、设备和技术。
(10)分路、耦合不灵活。
(11)光纤光缆的弯曲半径不能过小(>20cm)
(12)有供电困难问题。
利用光波在光导纤维中传输信息的通信方式.由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信.

4.光纤通信原理
光纤通信的原理就是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤经过光的全反射原理传送;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。

光通信正是利用了全反射原理,当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。光纤的导光特性基于光射线在纤芯和包层界面上的全反射,使光线限制在纤芯中传输。光纤中有两种光线,即子午光线和斜射光线,子午光线是位于子午面上的光光线,而斜射光线是不经过光纤轴线传输的光线。

下面以光线在阶跃光纤中传输为例解释光通信的原理。


如图所示为阶跃型光纤,纤芯折射率为n1,包层的折射率为n2,且n1>n2,空气折射率为n0。在光纤内传输的子午光线,简称内光线,遇到纤芯与包层的分界面的入射角大于θc时,才能保证光线在纤芯内产生多次反射,使光线沿光纤传输。然而,内光线的入射角大小又取决于从空气中入射的光线进入纤芯中所产生折射角θ2,因此,空气和纤芯界面上入射光的入射角θi就限定了光能否在光纤中以全反射形式传输,与内光线入射角的临界角θc相对应,光纤入射光的入射角θi 有一个最大值θmax。

当光线以θi>θmax入射到纤芯端面上时,内光线将以小于θc 的入射角投射到纤芯和包层界面上。这样的光线在包层中折射角小于90度,该光线将射入包层,很快就会露出光纤。

当光线以 θi<θmax入射到纤芯端面上时,入射光线在光纤内将以大于 的θc入射角投射到纤芯和包层界面上。这样的光线在包层中折射角大于90度,该光线将在纤芯和包层界面产生多次反射,使光线沿光纤传输。